Indivior R&D Day

New York City, USA
December 9th, 2015

Our vision is that all patients around the world will have unrestricted access to quality treatment services for the chronic relapsing conditions and co-morbidities of addiction.
Forward-looking statements

This presentation contains forward-looking statements. We may, in some cases, use terms such as "predicts," "believes," "potential," "proposed," "continue," "estimates," "anticipates," "expects," "plans," "intends," "may," "could," "might," "will," "should" or other words that convey uncertainty of future events or outcomes to identify these forward-looking statements. Forward-looking statements include, among other things, statements regarding our financial guidance for 2015 and our medium- and long-term growth outlook, our operational goals, our product development pipeline and statements regarding ongoing litigation.

Various factors may cause differences between Indivior’s expectations and actual results, including: factors affecting sales of Suboxone Tablet, Suboxone Film, Subutex Tablet and any future products; the outcome of research and development activities; decisions by regulatory authorities regarding the Indivior Group’s drug applications; the speed with which regulatory authorizations, pricing approvals and product launches may be achieved; the outcome of post-approval clinical trials; competitive developments; difficulties or delays in manufacturing; the impact of existing and future legislation and regulatory provisions on product exclusivity; trends toward managed care and healthcare cost containment; legislation or regulatory action affecting pharmaceutical product pricing, reimbursement or access; claims and concerns that may arise regarding the safety or efficacy of the Indivior Group’s products and product candidates; risks related to legal proceedings; the Indivior Group’s ability to protect its patents and other intellectual property; the outcome of the Suboxone Film patent litigation relating to the ongoing ANDA lawsuits; changes in governmental laws and regulations; issues related to the outsourcing of certain operational and staff functions to third parties; uncertainties related to general economic, political, business, industry, regulatory and market conditions; and the impact of acquisitions, divestitures, restructurings, internal reorganizations, product recalls and withdrawals and other unusual items.

Any forward-looking statements that we make in this presentation speak only as of the date of this presentation. We assume no obligation to update our forward-looking statements whether as a result of new information, future events or otherwise, after the date of this presentation.
Our vision is that all patients around the world will have unrestricted access to quality treatment services for the chronic relapsing conditions and co-morbidities of addiction.
Intranasal Naloxone for Opioid Overdose Treatment

History (US)

• Fast-Track Designation granted Jul 7th, 2014
• Pre-NDA meeting Nov 13th, 2014
• NDA submission #205678 on May 29th, 2015
• FDA Meeting on Naloxone Access on Jul 1st, 2015
• Priority Review granted on Jul 28th, 2015 with a PDUFA date of Nov 29th, 2015
• No Advisory Board; CMC questions; no clinical questions
• Carton/packaging and USPI changes discussions Oct 15th, 2015
• Request from FDA to list Indivior’s device on FDA website for Combination products
• FDA approval of Adapt Pharma’s Narcan (Naloxone Hydrochloride) Nasal Spray on Nov 19th, 2015
• FDA non-approval letter received on Nov 23rd, 2015

Next steps

US:
• Under evaluation

Canada:
• Pre-NDS meeting with Health Canada on Oct 22nd, 2015

France:
• Temporary Authorization for Use (ATU) dossier filed on Jun 17th, 2015
• ATU approved by ANSM on Nov 5th, 2015

Europe:
• EMA’s CHMP confirmed (Jul 6th, 2015) naloxone nasal spray is eligible for submission via the centralized route in the EU
• Meeting with MHRA on Dec 14th, 2015
Financial Guidance for 2016

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Net Revenue $m</td>
<td>990-1010</td>
<td>945-975</td>
<td>894</td>
<td>860-900</td>
</tr>
<tr>
<td>Operating Margin %</td>
<td></td>
<td>>30%</td>
<td>30%</td>
<td>27%-35%</td>
</tr>
<tr>
<td>Net Income $m*</td>
<td>215-225</td>
<td>155-180</td>
<td>166</td>
<td>140-180</td>
</tr>
</tbody>
</table>

- No material change in current market conditions;
 - no deterioration in generic tablet pricing;
 - limited impact of branded competition
 - no generic film entry in 2016.
 - modest loss of US share due to formulary changes & managed Medicaid accounts lost in 2015

- Reinvestment of >$35m of the gross profit above original assumptions in driving innovations:-
 - Buprenorphine Monthly Depot

*Excluding Exceptionals

At constant exchange rates (to estimated 2015 averages)
Why invest an extra $35m plus?

We can now afford to invest more

- Revenue, profit and cash flow above our earlier expectations
- But we believe we will protect the bottom line by releasing investment through the year

Builds the potential of our pipeline for better start on launch

- Intention is to deliver the sales and profit potential of the pipeline
- Exploits our leadership over competition – building on our leadership position

Invests in our core business and supported by our core skillset

- We have already demonstrated that we know how to develop these markets
- Allows us to invest in pre-commercialisation and infrastructure build

We believe this is the best kind of investment we can make in our future
Pre-launch activities

- Policy & stakeholder education
- Medical Education
- Publications

- Market Research
- Additional health policy advisers
- Additional field medical personnel
Reinvestment – R&D Pipeline Advancing

Buprenorphine Monthly Depot

- Topline results (TLFs) of Phase 3 Efficacy & Safety clinical trial (RB-US-13-0001)
- Submission of pre-NDA package to FDA
- HEOR study interim analysis results

Risperidone Monthly Depot

- Final Human Factor Study Report
- Topline results (Interim analysis TLFs for inclusion in the NDA) of Phase 3 Open Label Safety clinical trial (RB-US-13-0005)
So what do we hope you will learn today?

Patient experience

- What is addiction from a patient perspective?
- What do patients say about the difficulty of treatment for addiction?
- What are the unmet medical needs from a patient perspective?
- What does successful treatment look like for patients?

Indivior’s focus

- What is Indivior doing to address these unmet needs and generate new, successful treatment options?
- How is Indivior contributing to successful development of treatment?
- Why is Indivior’s pipeline exciting from a patient perspective?
Our vision is that all patients around the world will have unrestricted access to quality treatment services for the chronic relapsing conditions and co-morbidities of addiction.
<table>
<thead>
<tr>
<th>Time (EST)</th>
<th>Topic</th>
<th>Presenter</th>
</tr>
</thead>
<tbody>
<tr>
<td>7:30 AM - 8:00 AM</td>
<td>Coffee – Get Together</td>
<td></td>
</tr>
<tr>
<td>8:00 AM - 8:15 AM</td>
<td>Welcome & Indivior 2016 financial outlook</td>
<td>Shaun Thaxter, Chief Executive Officer</td>
</tr>
</tbody>
</table>
| 8:15 AM - 8:45 AM | - Outline of the day
- R&D strategy & capabilities | Dr. Christian Heidbreder, *Chief Scientific Officer* |
| 8:45 AM - 9:45 AM | **Opioid Use Disorder:**
- History of Buprenorphine
- Patient journey
- Unmet medical needs | Dr. Paul Fudala, Senior Fellow Clinical Science
| | | Dr. Tim Baxter, *Chief Medical Officer*
| | | Dr. Walter Ling, Professor of Psychiatry and Director of Integrated Substance Abuse Programs (ISAP) at UCLA |
| 9:45 AM - 10:00 AM | | Break |
| 10:00 AM - 10:30 AM | Introduction to the Opioid Blockade concept and clinical significance | Dr. Mark Greenwald, Professor and Director, Substance Abuse Research Division, Department of Psychiatry and Behavioral Neuroscience, Wayne State University School of Medicine |
| 10:30 AM - 11:00 AM | Introduction to the ATRIGEL drug delivery platform | Dr. Rick Norton, *Director Formulation Development* |
| 11:00 AM - 11:30 AM | **RBP-6000:** Opioid blockade study outcome
& current status of Phase 3 pivotal trial | Dr. Susan Learned, SVP Global Clinical Development
| | | Dr. Amit Vijapura, Board Certified Psychiatrist & Diplomate of the American Board of Addiction Medicine (ABAM). Medical director and owner of Vijapura Behavioral Health in Jacksonville, Florida |
| 11:30 AM - 12:15 PM | **Indivior Strategic Pipeline: Latest Status:**
- Existing Product Development (EPD)
- New Product Development (NPD)
- Early Stage Asset Development (ESAD) | Dr. Christian Heidbreder, *Chief Scientific Officer* |
| 12:15 PM - 1:00 PM | | Conclusions and Q&A |
Our vision is that all patients around the world will have unrestricted access to quality treatment services for the chronic relapsing conditions and co-morbidities of addiction.
Understanding addiction as the result of long-term molecular & cellular adaptations in key neural networks

- Learning & memory are impaired
- Resisting repetitive, maladaptive behaviors is failing
- Aspects of decision-making are compromised
- Reward prediction is biased
- Motivation is altered

The “ideal” drug candidate would:

- Inhibit the reinforcing properties of drugs and associated cues
- Reinflate the mechanisms of control by the PFC over the VTA-NAc
- Relieve physical and motivational withdrawal symptoms
- Prevent relapse in response to drug priming, environmental cues (context), and stress
- Have an impact on the negative reinforcement generated by the stress neural circuit (extended amygdala)

R&D strategy to address challenges in addiction medicine

Type A
New disease area
High unmet needs
Stimulant Use Disorder
Cannabis Use Disorder

Type B
Low disease maturity
High unmet needs
Alcohol Use Disorder

Type C
Relative maturity
Some unmet needs
Opioid Use Disorder

Type D
Mature disease area
No unmet needs
Building an R&D organization fit for purpose

- Regulatory Strategy
- Regulatory Operations
- Regulatory Affairs NA; EU; Australasia

- Clinical Operations
- Clinical Sciences
- HEOR

- Regulatory 31%
- Clinical 25%
- CMC 37%
- Other 7%

- 165 FTEs

- Formulation Development
- Analytical Development
- Process Development
- Chemical Development

- Global Program Management
- Financial planning
- Timelines
- KPIs

- GPM 6%
- Training 1%

- Therapeutic Alliances
- Quality Treatment
- HEOR Value

- Clinical Efficacy & Safety

165 FTEs

Indivior R&D Day | December 9th 2015
Delivering major milestones across functions

Clinical
- **10 programs** in development
- **Unprecedented number of ongoing trials:**
 - 2 Phase 1 trials
 - 2 Phase 2 trials
 - 4 Phase 3 trials
 - 1 Phase 4 study
 - 5 prospective HEOR studies
- **Well-positioned to deliver on KPI expectations**

Regulatory
- **Suboxone sublingual film:**
 - 2/8mg FDA approval Aug ’10; TGA approval Feb ’11; Malaysia approval Jul ’13
 - 4/12mg FDA approval Aug ’12; TGA approval May ’14
 - 2/4/8/12mg induction indication FDA approval Apr ’14; buccal indication FDA approval Sep ’15
- **Intranasal naloxone:**
 - France: ATU approved in Nov ’15
- **RBP-8000:**
 - Breakthrough Therapy Designation granted by FDA Oct ’14

CMC
- **Pillar 1: Internal non-GMP capability (Innovation)**
 - Formulation research & innovation lab
 - Analytical research lab
 - Chemistry research lab (Hull) & non-clinical lab (Ft Collins)
- **Pillar 2: Internal GMP capability (Pilot Scale Manufacturing)**
 - Pilot plant manufacturing unit
 - Analytical development lab
 - ICH stability
- **Pillar 3: Technology Transfer**
 - Management of 3rd party CMO
 - Formal hand over of ownership to Indivior supply
Recognized for scientific excellence

A Model-Based Approach to Characterize the Population Pharmacokinetics and the Relationship Between the Pharmacokinetic and Safety Profiles of RBP-7000, A New, Long-Acting, Sustained-Released Formulation of Risperidone

R. Gomori, PhD1, C. Heidbreder, PhD1, P.J. Fudala, PhD1, and A.F. Nasser, PhD1

Population Pharmacokinetics and Prediction of Dopamine D2 Receptor Occupancy After Multiple Doses of RBP-7000, a New Sustained-Release Formulation of Risperidone, in Schizophrenia Patients on Stable Oral Risperidone Treatment

Celine M. Laffont - Roberto Gomori - Bo Zhang - Christina Heidbreder - Paul J. Fudala - Azmi F. Nasser

Pharmacokinetics of Sublingual Buprenorphine and Naloxone in Subjects with Mild to Severe Hepatic Impairment (Child-Pugh Classes A, B, and C), in Hepatitis C Virus-Seropositive Subjects, and in Healthy Volunteers

A randomized, double-blind, placebo-controlled trial of RBP-8000 in cocaine addicted pharmacokinetic profiles of RBP-8000 and cocaine and effects of RBP-8000 on cocaine-induced physiological effects

Azmi F. Nasser, PhD, Paul J. Fudala, PhD, Bo Zhang, PhD, Yonghao Liu, PhD, Christina Heidbreder, PhD

Indivior R&D Day | December 9th 2015
Sponsoring scientific excellence

Building a new Centre of Excellence in Hull, UK

Source: Boulting Environmental Services (BES), Manchester, UK
Enabling Indivior’s vision & mission

Disease understanding
Translate scientific knowledge into new opportunities

Pharmacogenetics
Pharmacogenetics plans in Indivior’s pivotal phase III trials respond to a vision for addressing patients’ unmet needs

Pharmacoeconomics
Prospective HEOR plans in Indivior’s pivotal phase III trials respond to payers’ focus on actual medical and financial benefits for patients

Therapeutic alliances
Long-term strategic alliances with NIDA, NIAAA, and KOLs enable Indivior to be at the forefront of new treatment options for patients
INDIVIOR R&D DAY

OPIOID USE DISORDER

Paul J. Fudala, Ph.D, R.Ph., Senior Fellow Clinical Sciences
Walter Ling, M.D., Professor & Founding Director of UCLA’s Integrated Substance Abuse Programs
Tim Baxter, M.D., Chief Medical Officer

Our vision is that all patients around the world will have unrestricted access to quality treatment services for the chronic relapsing conditions and co-morbidities of addiction
Paul J. Fudala, Ph.D, R.Ph.

Dr. Fudala is a pharmacist and toxicologist by training

- Initially worked as a community and hospital pharmacist, including as a commissioned officer in the USPHS on the Pine Ridge Indian Reservation in SD
- Earned doctorate degree at the University of Kentucky; mainly conducted research on behavioral pharmacology/toxicology of nicotine
 - First to demonstrate/publish on the rewarding effects of nicotine in the CPP paradigm
- 4 years at the ARC in Baltimore starting in 1987; 1 as post-doctoral fellow and then 3 as Deputy Chief of Research Support Branch and later Acting Head of Clinical Trials Laboratory
 - Conducted clinical research in various addiction-related areas; conducted/published along with Drs. Ed Johnson and Jerome Jaffe a buprenorphine/methadone comparison study that was pivotal with regards to FDA approval of SUBUTEX and SUBOXONE tablets
- 14 years at UPENN Dept. of Psychiatry and Philadelphia VAMC beginning in 1991; for most of those years chaired an interagency medication development effort between NIDA and the VA; focused primarily on developing new treatments for opioid and cocaine addiction
 - Study Chairman on the final trial that supported FDA approval of LAAM and, along with Dr. Peter Bridge from NIDA, was Co-Chairman on another of the 3 pivotal trials that led to FDA approval of SUBUTEX and SUBOXONE tablets
- Joined RBP Pharma (now Indivior) in August, 2005
 - Held various Director and Global Director positions; currently Senior Fellow, Clinical Science
 - Lead the clinical development effort for SUBOXONE sublingual film and has been involved in almost all EPD/NPD projects
Prof Walter Ling, MD

Prof Ling is board certified both in neurology and in psychiatry

• Based in Los Angeles, he is a physician who is active both in research and in clinical practice

• Prof Ling is and has been consistently listed in the Best Doctors in America, Best Doctors in the West and Best Doctors in Los Angeles

• He is Professor and Founding Director of UCLA’s Integrated Substance Abuse Programs, one of the premier addiction research organizations worldwide

• Involved in treating opioid addiction since the introduction of methadone treatment in this country and he received his first grant from Jerry Jaffe, our first Drug Czar under president Nixon

• Prof Ling has been a continuous grantee researcher of NIDA since its inception in the 70s and he has conducted most of the pivotal clinical trials of buprenorphine that provided data for its approval by the FDA
RBP-6000 – A ONCE-MONTHLY SUSTAINED RELEASE FORMULATION OF BUPRENORPHINE FOR THE TREATMENT OF OPIOID USE DISORDER

Dr. Mark K. Greenwald, Ph.D.
Dr. Rick Norton, Ph.D.
Dr. Susan Learned, M.D., Pharm.D., Ph.D.
Dr. Amit Vijapura, M.D.
INTRODUCTION TO THE OPIOID BLOCKADE CONCEPT & CLINICAL SIGNIFICANCE

Dr. Mark K. Greenwald, Ph.D.

Professor, Associate Chair for Research, and Director of the Substance Abuse Research Division
Department of Psychiatry and Behavioral Neurosciences & Department of Pharmacy Practice

Wayne State University, Detroit, MI, USA
Objectives

Introduce opioid blockade concept
Highlight mu-opioid receptor (μOR) actions of buprenorphine (BUP) as the critical target

Clinical significance
Review landmark studies that examined two major functional outcomes of varying μOR occupancy and BUP plasma concentrations in opioid-dependent volunteers maintained on the BUP sublingual tablet
• BUP-induced suppression of withdrawal signs/symptoms while the subject is abstaining from other opioid use (“withdrawal suppression”)
• BUP-induced attenuation of agonist effects from experimental opioid challenges (“opioid blockade”)

Discuss implications for optimal dosing levels of RBP-6000
PK/PD model (from BUP tablet studies) to predict plasma (and, by inference, brain) levels of sustained release BUP needed to induce opioid withdrawal suppression AND blockade
BUP activates Mu-Opioid receptors at physiologically relevant concentrations

BUP is a partial agonist at µORs but across a wide dose range it does not activate kappa or delta opioid receptors (where it is an antagonist).

There is no convincing evidence to date that BUP antagonism at kappa or delta receptors mediates its clinical efficacy for treating opioid use disorder.

BUP-induced intracellular activation is \(\approx 1000 \times \) more potent at µORs than at nociceptin receptors, which are probably not relevant to BUP effects at clinically relevant doses.

Thus, BUP effects are essentially attributable to its partial agonist effects at the µOR.

Do medication plasma concentrations and brain receptor occupancy closely correlate?

Medication plasma levels have sometimes been assumed as a **proxy for CNS receptor concentration**, but this assumption may not universally hold true.

Need to consider:

<table>
<thead>
<tr>
<th>Dosing regimen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acute vs. chronic daily vs. sustained release</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Medication characteristics</th>
</tr>
</thead>
<tbody>
<tr>
<td>e.g., affinity, half-life, biodistribution</td>
</tr>
</tbody>
</table>

Also, it’s not known whether plasma level corresponds to effective concentrations at specific CNS anatomical sites that mediate signs/symptoms of the disorder.
Use PET imaging and $[^{11}\text{C}]$-carfentanil to estimate µOR “occupancy” in vivo

- This radiotracer (administered at sub-pharmacological doses) is very selective, and has high affinity, for µORs
- **Method:** Infuse the tracer after a known BUP dose (and time since dose) to examine competitive binding between BUP and the tracer
 - Think of carfentanil just like any other opioid drug
- Co-register each PET image to the subject’s MRI scan to localize brain regions of interest that are involved in addictive behaviors (relative to a control region without µORs, occipital cortex)
- **Caveat:** Technical term is receptor “availability” (non-displaceable binding potential, BP$_{ND}$) = 100% minus the percentage of receptors occupied by BUP. Occupancy is the complement of availability.
 - Gas-tank analogy (full/occupied vs. empty/available)

Practical application of receptor theory to medication development

Target for treating opioid use disorder is the *mu*-opioid receptor (\(\mu\)OR), regardless of whether the medication is an agonist (buprenorphine, methadone) or antagonist (naltrexone)

- \(\mu\)OR is implicated in the reinforcing and physical dependence related effects of major opioids including heroin and FDA-approved analgesics
- All FDA-approved medications for treating opioid use disorder act primarily at the \(\mu\)OR

With addiction medicines such as BUP, we are looking to maximize efficacy and minimize side effects within a ‘therapeutic window’ along a continuum (mediated by \(\mu\)OR occupancy), but need to be clear regarding which efficacy measures...

Therapeutic window

- **Ineffective but safe**
- **Effective and safe**
- **Effective but unsafe**
- **Ineffective and unsafe**

Increasing receptor occupancy \(\rightarrow\) (or decreasing receptor availability)
Theoretical ordering of μOR requirements for differing behavioral tests

Increasing receptor occupancy -> (or decreasing receptor availability)
Research objective/strategy

Use multi-dimensional assessments to characterize relationships between μOR occupancy (PET and $[^{11}\text{C}]$-Carfentanil), plasma BUP concentrations, and clinically relevant outcomes esp. opioid withdrawal suppression and opioid blockade

In two related studies, used complementary experimental strategies to manipulate μOR occupancy in heroin-dependent, buprenorphine (BUP; Subutex) tablet-maintained subjects

- **Study 1 – Greenwald et al. 2003**
 Vary maintenance dose (on different weeks) – Scan at the same post-dose time (4 hours, close to peak effect)

- **Study 2 – Greenwald et al. 2007**
 Omit maintenance dose (over several days) – Scan at different post-dose times

Study 1: Methods

Each subject maintained on descending series of daily BUP (Subutex) tablet doses: 32-mg, 16-mg, 2-mg and then placebo (detoxification) across successive weeks.

Outpatient weeks (stabilization) alternated with inpatient weeks (testing). Inpatient stays and urine testing ensured no additional drug use that would interfere with measurements.

[\(^{11}\text{C}\)-Carfentanil PET scans, BUP plasma levels (24-hour PK), opioid symptom measures, and hydromorphone 24-mg IM challenge to test opioid blockade at each BUP maintenance dose level (4 hours after the daily dose) on each of the 4 experimental weeks.
Study 1: Buprenorphine dose-effect on μOR availability

Study 1:
Global-brain μOR availability predicts withdrawal suppression

Study 1: Higher-dose BUP produces significant opioid blockade (OB)

Indivior R&D Day | December 9th 2015
Study 2: Vary time since Buprenorphine dose

Aims

Determine if µOR availability differs at 4, 28, 52 and 76 hours after omitting BUP maintenance dose (16 mg Subutex)

Do post-BUP time-related variations in µOR availability correlate with BUP plasma levels, opioid withdrawal symptoms, and the ability of BUP to block effects of hydromorphone?

Method

Each volunteer (n=10 completed) was tested in all 4 conditions, thereby serving as his/her own control
Study 2:
μOR availability across post-BUP time and brain regions

Indivior R&D Day | December 9th 2015
Study 2: Relationships of µOR occupancy to plasma, withdrawal and blockade

Outcome measure

Plasma level
(ng/ml);

Opioid Withdrawal symptoms
(0-64 scale),

or **change in Agonist Symptoms**
(blockade)

Conclusions

µOR occupancy is non-linearly related to BUP plasma concentrations
Significant relationship observed for each individual subject

µOR occupancy is linearly related to withdrawal suppression and blockade

- In these physically dependent individuals, average µOR occupancy of ≈50% is effective for withdrawal suppression; associated with plasma levels > 1 ng/mL (and, generally speaking, BUP tablet doses > 4 mg/day)
- Estimating µOR occupancy requirement for opioid blockade partly depends on methodological differences (HYD bolus in Study 1, whereas cumulative in Study 2); however, data suggest µOR occupancy requirement for blockade is ≈80%, which is higher than for withdrawal suppression; associated with plasma levels > 3 ng/mL (and, generally speaking, BUP tablet doses > 16 mg/day)

Time-related variation in these BUP effects should be minimized with a sustained-release formulation

BUP tablet maintenance produces dose- and time-dependent increases in µOR occupancy that closely correlate with its plasma concentrations as well as opioid withdrawal suppression and opioid blockade.

Opioid blockade is a “taller order”: this behavioral criterion requires more µOR occupancy than opioid withdrawal suppression; need to pay careful attention to this difference because it will predict efficacy in long-term treatment.

✓ “opioid blockade” = “the absence of reactivity to (physiological or abuse-related subjective effects) or responding for (reinforcing effects) an opioid agonist, when statistically compared to placebo”, and we noted that “most practitioners and policymakers typically intend this desired blockade effect should be evident in most patients to be clinically meaningful and relevant to guidelines or dosing limits”. We also concluded that “opioid blockade (more so than withdrawal suppression) should be the primary criterion guiding BUP maintenance dose” (Greenwald et al. 2014, p.8).

Sustained-release RBP-6000 at 300-mg seems very likely to produce the target plasma level and µOR occupancy requirements that should be effective for withdrawal suppression and blockade.

INTRODUCTION TO ATRIGEL®

Dr. Rick Norton, Ph.D.

Director, Formulation Development, Indivior Inc.
Outline

ATRIGEL® drug delivery platform
• Patient’s point of view
• Underlying science

RBP-6000 for opioid use disorder

ATRIGEL is a registered trademark of Tolmar Therapeutics, Inc.
ATRIGEL® drug delivery platform: Patient’s point of view

Long acting injectable
One injection per month (typically)
Compliance/Confidence

Subcutaneous injection in abdomen

Biodegradable - no removal required
ATRIGEL® drug delivery platform: Established products

ELIGARD

Available in 1, 3, 4 and 6 month dosages

Subcutaneous doses for controlled release of leuprolide acetate

Currently marketed in 67 countries

Source – May 18, 2015 Tolmar Press Release (Business Wire)
Indivior R&D Day | December 9th 2015
Plasma levels:
Typical daily dosing - illustration

NOTE: Simulated data For illustration purposes
Plasma levels: Month of daily dosing - illustration

NOTE: Simulated data For illustration purposes
Plasma levels: Lack of compliance - illustration

NOTE: Simulated data For illustration purposes
Plasma levels: Compare with ATRIGEL® depot - idealized illustration

NOTE: Simulated data For illustration purposes
Plasma levels: Compare with ATRIGEL® depot - idealized illustration

NOTE: Simulated data For illustration purposes

Cmax near daily Cmax

Plasma concentration

Day

0 5 10 15 20 25 30
Plasma levels: Compare with ATRIGEL® depot - idealized illustration

NOTE: Simulated data For illustration purposes

Cmax near daily Cmax

Plasma concentration vs. Day
Plasma levels:
Compare with ATRIGEL® depot - idealized illustration

NOTE: Simulated data For illustration purposes

- **Cmax near daily Cmax**
- **No daily fluctuations**
- **Daily compliance not an issue**
ATRIGEL® drug delivery platform:
Underlying science
ATRIGEL® components

Biodegradable Polymer + Biocompatible Solvent + Drug

ATRIGEL® delivery system
How does it work?

Injected as a liquid
How does it work?

Injected as a liquid

Solidifies in the subcutaneous space
How does it work?

- Injected as a liquid
- Solidifies in the subcutaneous space
- Releases drug into the body
How does it work?

- Injected as a liquid
- Solidifies in the subcutaneous space
- Releases drug into the body
- Biodegrades
Solidification demonstration
How does it work?

Solidification

Injected liquid

Solvent out

Drug out

Water in

Plasma level

Day

0 2 4 6
How does it work?
Solidification

- Injected liquid
- Solvent out
- Water in
- Drug out
- Polymer solidification at surface

Plasma level

0 2 4 6
Day

0 2 4 6
Plasma level

Indivior R&D Day | December 9th 2015
How does it work?
Solidification
How does it work?
Drug release

- Diffusion
- Polymer Degradation – lowers barrier to diffusion over time
- Balance of diffusion and polymer degradation needed to get desired release rate and pharmacokinetics
Why does it work?

Biocompatible solvent

In addition to all the safety requirements
- Good solvent for the polymer
- Water miscible

N-methyl-pyrrolidone (NMP)

Used in all ATRIGEL® products to date
Great polymer solvent
Quickly dissipates into the body
Why does it work?

Biodegradable polymer

In addition to biodegradable
• Biocompatible
• Water insoluble
• Customizable structure

Poly(lactide-co-glycolide) family of polymers

Used in all ATRIGEL® products to date
Used in wide range of drug delivery systems and medical devices
Solid safety record
Breaks down to lactic and glycolic acids
Customizable structure
Polymer degradation

Degradation of Poly(lactide-co-glycolide) polymers

- Hydrolysis of ester bonds
- Molecular weight drops due to random chain scission
- Low molecular weight fragments are water soluble
- Eventually lactic and glycolic acid
Introduction to RBP-6000

U.S. patents
• 8,921,387
• 8,975,270

International patents
• U.K. GB2513267
• Australia 2011263478
• New Zealand 604026
• South Africa 2012/09233

Various patent applications pending
Solution of Buprenorphine in ATRIGEL® delivery system

Syringe
Ready to Inject
Refrigerated; 7 days at room temperature

Dosage strengths
100 mg (0.5 mL injection)
300 mg (1.5 mL injection)
RBP-6000: CLINICAL DEVELOPMENT
THE PATHWAY TO WHERE WE ARE TODAY

Dr. Susan Learned, M.D., Pharm.D., Ph.D.

Senior Vice-President, Global Clinical Development, Indivior Inc.
RBP-6000 - US clinical development program

- **First-in-man study** (20 mg)
- **Single Ascending Dose study** (50, 100, and 200 mg)
- **Multiple Ascending Dose study** (50, 100, 200, and 300 mg)
- **Opioid blockade study**
- **Double blind, PC phase 3 study**
- **Open label extended safety study**
OUD treatment paradigm shift

FDA Type C meeting:
Target a dose that will fully block opioid agonist effects in Phase 3 trial

Hypotheses testing:
• Based on PD analysis, an average buprenorphine plasma level of 2-3 ng/mL will produce ~70% μ receptor occupancy (confirm in Phase 2 MAD study)
• Obtain these levels from the first SC injection (avoid SL rescue medication in Phase 3; block effects of illicit opioid use)
• Perform preliminary assumptions testing by using clinical data from Greenwald et al.
• Conduct an opioid blockade study to confirm the assumptions
Q#1: What is the PK profile of RBP-6000 in a Multiple Ascending Dose (MAD) study?

SS $C_{avg} = 0.96$ ng/mL

SS $C_{avg} = 1.66$ ng/mL

SS $C_{avg} = 2.8$ ng/mL

SS $C_{avg} = 5.12$ ng/mL
Q#2: What is the PK/RO relationship & predictions of opioid blockade with RBP-6000 (200 mg & 300 mg)?

200mg: 2-3ng/mL / 75-80% RO
300mg: 4-7ng/mL / 81-92% RO
RBP-6000: Opioid blockade study

<table>
<thead>
<tr>
<th>Title</th>
<th>Patient population</th>
<th>Dosing level for all subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Multiple-Dose study of blockade of subjective opioid effects, plasma levels, and safety of subcutaneous injections of depot Buprenorphine (RBP-6000) in subjects with opioid use disorder</td>
<td>39 opioid-dependent males and females; not treatment-seeking</td>
<td>0 mg hydromorphone challenges after 300 mg RBP-6000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 mg hydromorphone challenges after 300 mg RBP-6000</td>
</tr>
<tr>
<td></td>
<td></td>
<td>18 mg hydromorphone challenges after 300 mg RBP-6000</td>
</tr>
</tbody>
</table>
Opioid blockade study design

<table>
<thead>
<tr>
<th>Screening</th>
<th>Week 1 (Sublingual)</th>
<th>1st injection</th>
<th>2nd injection</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 2 3 4 5 6 7 8 9 10 11 12</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Qualification period**
- **1st injection**
- **2nd injection**

RBP-6000 injection days

Hydromorphone challenge days

(5th, 6th, and 7th day of each week)
RBP-6000: Opioid blockade study – outcome measures

Subjective Effects (VAS Scores)

• Drug Liking (Primary outcome measure)
• Any Drug Effect
• Good Drug Effect
• Bad Drug Effect
• High
• Sedation
• $30(\pm 5)$ before and $15, 30, 45, 60, 75, 90, 120, 150, 180, 210, 240, 270, and $300(\pm 5)$ minutes after HM challenge

Reinforcing Effects

• No earlier than 5 hours after HM challenge
• Choose the amount of HM dosed that day or money in progressive ratio schedule
• HM break point value:
 – Highest Level of HM Units Earned
Q#3: Can we confirm the PD predictions with the opioid blockade study?

Opioid blockade study:
Drug liking – baseline scores
Q#3: Can we confirm the PD predictions with the opioid blockade study?

Opioid blockade study: Drug liking – RBP-6000

month 1

Opioid blockade study: Drug liking – RBP-6000

month 2
Q#3: Can we confirm the PD predictions with the opioid blockade study?

Opioid blockade study:
Drug liking – RBP-6000

month 3
The PK profile of RBP-6000 was derived after single and multiple ascending dose studies.

A PK/RO model was established and validated with data from the MAD study.

The “opioid blockade” hypothesis was tested clinically.

The outcome of the “opioid blockade” study was used to support the design of the pivotal Phase 3 trial.
RBP-6000: Phase 3 study design

Randomized, double-blind, placebo-controlled study

Induction
- 3 days
- 2-24mg SL

Stabilization
- 4 – 11 days
- 8-24mg SL

Randomization
- (n= 470)

Treatment 6 double-blind injections; and weekly urine visits
(Weeks 1 - 21)

- **RBP-6000 300 mg x 2 months/**
 RBP-6000 100mg x 4 months (188 subjects)*

- **RBP-6000 300mg x 6 months**
 (188 subjects)*

- **Placebo x 6 months**
 (94 subjects, volume matched equivalent)*

Follow Up
(option to roll into safety extension)

Week 24/25

Primary endpoint:
The CDF of the percentage of urine samples negative for opioids combined with self-reports negative for illicit opioid use collected from Week 5 through Week 24.

Secondary endpoints:
Treatment success, defined as any subject with ≥80% of urine samples negative for opioids combined with self-reports negative for illicit opioid use between Week 17-24.

All randomized subjects receive the following taper doses: Day 1: 6 mg; Day 2: 4 mg; Day 3: 4 mg; Day 4: 2 mg; Day 5: 2 mg
INDIVIOR R&D DAY

UPDATE ON PHASE 3 PIVOTAL TRIAL WITH RBP-6000

Dr. Amit Vijapura, M.D.
Dr. Amit Vijapura, M.D.

Dr. Vijapura is a medical specialist with board certification in Psychiatry & Addiction Medicine based in Jacksonville, Florida in private practice for the last 25 years.

He is running a clinical research site with three research coordinators. He has been involved in clinical research for opioid dependence for the last 10 years and has completed many different Phase II and Phase III studies for this condition.

He is a Principal Investigator of RB - US 0001 and 0003 studies.

His private practice has many opioid-dependent patients. He is able to utilize all available FDA approved products to treat his patients.

He is also involved in teaching at the local, regional, and national level for different diseases and pharmaceutical products, teaching medical students and resident physicians.
Experience treating OUD patients with RBP-6000 in ongoing clinical trials

01 Dealing with non-compliance, diversion in office-based treatment

02 Experience with depot Buprenorphine studies

03 Clinical trials:
 1. **RB-US 0001**
 (Total subjects = 34);
 2. **RB-US 0003**
 (Current subjects = 23, and enrolling)

04 Patient experience during research

05 Physician experience during research

06 Verbal testimonial from subjects

07 As a clinician if depot Buprenorphine gets FDA approval in future how it will change treatment paradigm for doctors and patients
Our vision is that all patients around the world will have unrestricted access to quality treatment services for the chronic relapsing conditions and co-morbidities of addiction.
R&D strategy to address challenges in addiction medicine

Unmet Need

Early Stage Asset Development (ESAD)

New Product Development (NPD)

Existing Product Development (EPD)

Maturity
Existing Product Development (EPD)

Overview & latest update
Suboxone® Tablet

<table>
<thead>
<tr>
<th>Target</th>
<th>Objective</th>
<th>Status</th>
</tr>
</thead>
</table>
| USA/Global | Changes to the pregnancy and nursing mothers sections of the labeling for all buprenorphine products (1) | • Briefing Book submitted to FDA Jun 19th, 2014; feedback received Sep 12th, 2014
• sNDA successfully submitted to the FDA on May 15th, 2015
• Approval expected in May 2016 |
| Europe | Additional dosage strength 16 mg/4 mg | • Completion of clinical PK studies (RB-UK-12-0007 & RB-UK-12-0008)
• Dossier submitted to EMA Sep 1st, 2014
• Response from EMA received on Sep 4th, 2015
• Approval of Suboxone 16mg/4mg strength in the EU received on Nov 16th, 2015 |
• RB-CN-10-0013: Efficacy study on track for Last Patient last Visit by Dec 31st, 2015
• RB-CN-10-0015: MD(3) study on track for Last Patient last Visit by Dec 31st, 2015 |

(2) SAD = Single Ascending Dose
(3) MD = Multiple Dose
Suboxone® Film

<table>
<thead>
<tr>
<th>Target</th>
<th>Objective</th>
<th>Status</th>
</tr>
</thead>
</table>
| **USA** | Buccal indication | - PDUFA date Feb 21st, 2015
- FDA approval on Sep 22nd, 2015 |
| | Phase IV Commitment Hepatic | - Published in Clin Pharmacokinet. 2015 Aug;54(8):837-49. http://dx.doi.org/10.1007/s40262-015-0238-6 |
| | Phase IV Commitment tQT* | - Clinical Study Protocol successfully sent to the FDA on May 12th, 2015
- FDA feedback received on Jul 27th, 2015
| **EU** | Film formulation | - Final Clinical Study Report (RB-US-14-0002) on Aug 17th, 2015
- Project delayed as the prototype formulation for EU has not met its specified bio-equivalency to the EU/Rest of World Suboxone® Tablet formulation |
| **CAN** | Film reformulation | |
| **GLOBAL** | Clinical efficacy & safety | - Clinical Trial Application approved by the Chinese Center for Drug Evaluation (CDE) at SFDA |

tQT = Thorough QTc prolongation
New Product Development (NPD)

Overview & latest update
New Product Development: Opioid use disorder

<table>
<thead>
<tr>
<th>Product</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBP-6000: Buprenorphine once monthly in Atrigel®</td>
<td>US:</td>
</tr>
<tr>
<td></td>
<td>• US Patent No. 8,975,270 was issued Mar 10th, 2015 with an expiration date of Sep 5th, 2031. The ‘270 patent will be the second listable patent in the Orange Book upon FDA approval of the product.</td>
</tr>
<tr>
<td></td>
<td>• Four major Health Economics & Outcomes Research projects currently ongoing.</td>
</tr>
<tr>
<td>RBP-6300: Buprenorphine Hemiadipate in Encap’s Abusolve</td>
<td>EU:</td>
</tr>
</tbody>
</table>

- **PK Study in Man (RB-EU-14-0001):** First Patient In on Sep 30th, 2015.
- **US/EU:** A Phase 2 dose-ranging study following the pivotal PK study in Man will most probably be required before committing to a pivotal Phase 3 trial, which will translate into possible changes in current approval date (2018) in Europe. Remaining development plans and associated timelines will be confirmed following outcome of pivotal PK study in Q2-2016.
New Product Development:
Rescue medications for drug overdose

<table>
<thead>
<tr>
<th>Product</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naloxone intranasal spray for treatment of opioid overdose</td>
<td>US: Under evaluation</td>
</tr>
<tr>
<td></td>
<td>Canada: Pre-NDS meeting with Health Canada on Oct 22(^{nd}), 2015</td>
</tr>
<tr>
<td></td>
<td>France: Temporary Authorization for Use (ATU) dossier filed on Jun 17(^{th}), 2015. ATU approved by ANSM on Nov 5(^{th}), 2015</td>
</tr>
<tr>
<td></td>
<td>Europe: EMA’s CHMP confirmed (Jul 6(^{th}), 2015) naloxone nasal spray is eligible for submission via the centralized route in the EU</td>
</tr>
</tbody>
</table>

RBP-8000:
Cocaine esterase for treatment of cocaine intoxication

- Breakthrough Therapy Designation granted Oct 17\(^{th}\), 2014
- Briefing Pack submission to FDA Feb 6\(^{th}\), 2015
- Type B meeting with the FDA successfully held on May 7\(^{th}\), 2015
- Clinical development and manufacturing plans currently re-assessed according to FDA requirements in the context of Breakthrough Therapy Designation. Second Type B meeting with the FDA to be held by Dec 31\(^{st}\), 2015

Indivior R&D Day | December 9th 2015
New Product Development:
Alcohol use disorder

Product	Status
Arbaclofen Placarbil	• Pre-IND meeting with FDA Jan 29th, 2015
• IND submission: Jun 26th, 2015	
• RB-US-14-0001: A randomized, double-blind, placebo-controlled, Dose escalation study to determine the Maximum Tolerated Dose (MTD) of Arbaclofen Placarbil (AP) in subjects with Alcohol Use Disorder (AUD); First patient screened on Sep 15th, 2015	

Primary endpoints:
Efficacy should be expressed by change to baseline in total consumption of alcohol (per month, presented as amount of pure alcohol in grams per day) as well as by reduction in number of Heavy Drinking Days (HDD defined as more than 56 grams of pure alcohol in men and 42 grams in women). A clinically relevant difference compared to placebo should be demonstrated.

Secondary endpoints:
Efficacy should be evaluated in terms of responders, reflecting an expected significant improved health outcome on an individual patient level (e.g., % subjects with a 50%, 70% and 90% reduction in alcohol consumption and % patients achieving maintained abstinence or % subjects with a significant categorical shift in WHO risk levels of drinking.

New Product Development: Psychiatric co-morbidities

<table>
<thead>
<tr>
<th>Product</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>RBP-7000:</td>
<td>Risperidone once monthly in Atrigel®
 - Phase 3 pivotal efficacy study (RB-US-09-0010): Completed; Preliminary data from pivotal Phase III Efficacy study were published on May 5th, 2015
 - Phase 3 long-term safety study (RB-US-13-0005): Enrolment ongoing
 - US Application No. 14/490,034 and US Application No. 14/490,082: Notices of Allowance have been received on Sep 25th; US patents granted in Nov; these patents will be listable in the Orange Book</td>
</tr>
</tbody>
</table>
Early Stage Asset Development (ESAD)

Overview & latest update
Selective dopamine D3 receptor antagonists for the treatment of Stimulant Use Disorder

D₃ receptors are located on a pathway known to modulate reward-related mechanisms

D₃ receptors are over-expressed in brain tissues from human addicts

D₃ receptors are over-expressed in brain tissues from animal disease models

Would a selective DA D₃ receptor antagonist show efficacy in the treatment of stimulant addiction?

Indivior R&D Day | December 9th 2015
Positive Allosteric Modulator of GABA-A receptors for the treatment of Alcohol Use Disorder

The GABA-A receptor is a complex pentameric (five subunit) protein which is composed of particular combinations of α (1–6), β (1–3), γ (1–3), δ, ε, and θ subunits.

The presence of the δ subunit-containing GABA-A generates a receptor that is not responsive to benzodiazepines, *but that is significantly more sensitive to ethanol* than GABA-A receptors containing the γ subunit (the subunit which is necessary for the actions of benzodiazepines).

Lohocla Research Corporation, a company established in 1983 in Chicago by Dr. Boris Tabakoff, has developed a positive allosteric modulator (PAM) at GABA-A receptors of particular subunit compositions.

Indivior is sponsoring a 5-year National Institute on Alcohol Abuse and Alcoholism (NIAAA) grant (NIAAA PAR 15-154) that was approved for a total of a $6.5 million.

Source: Jacob TC, Moss SJ, Jurd R. GABA(A) receptor trafficking and its role in the dynamic modulation of neuronal inhibition. Nat. Rev. Neurosci. 2008 May;9(5):331-43. DOI: 10.1038/nrn2370
Our vision is that all patients around the world will have unrestricted access to quality treatment services for the chronic relapsing conditions and co-morbidities of addiction.